3A) Cardiac MPO activity measurement showed increases in its con

3A). Cardiac MPO activity measurement showed increases in its concentration in clozapine-treated animals at the significance level of p < 0.01 with doses of 10 and 15 mg/kg and at p < 0.001 with the dose of 25 mg/kg/d (Fig. 3B). Results obtained from the effects of clozapine on cardiac levels of MDA, NO, GSH and GSH-Px activity are shown in Table 3. Clozapine treatment significantly affected myocardial lipid peroxidation and cardiac levels of MDA [F(3,39) = 7.158,

p = 0.0007]. Post-hoc analysis indicated that clozapine treatment significantly increased cardiac MDA levels at doses of 15 mg/kg (p < 0.05) and 25 mg/kg (p < 0.01) relative to control. In addition, regarding myocardial NO level, PARP assay there was a significant difference between treated groups [F(3,39) = 7.374, p = 0.0006]. Clozapine treatment significantly increased cardiac NO levels at doses of 15 mg/kg (p < 0.05) and 25 mg/kg (p < 0.01) relative to controls. Moreover, clozapine treatment decreased the myocardial GSH level [F(3,39) = 3.512, p = 0.0248], which was significant relative to controls for the 25-mg/kg dose. Furthermore, clozapine treatment attenuated the GSH-Px activity

[F(3,39) = 4.586, p = 0.0081], which was significant relative to controls at significance level p < 0.05 for the dose of 15 mg/kg and p < 0.01 for the selleck screening library dose 25 mg/kg. 8-hydroxy-2’-deoxyguanosine (8-OHdG) is a product of oxidatively damaged DNA and is formed by hydroxy radicals and singlet oxygen. Measurement of 8-OHdG levels revealed significant changes

among clozapine-treated groups [F(3,39) = 8.850, p = 0.0002] and [F(3,39) = 6.512, p = 0.0012] in serum and cardiac tissues, respectively. After 21 days of clozapine treatment, the serum 8-OHdG levels significantly increased (p < 0.05) with the dose of 15 mg/kg and more significantly increased (p < 0.01) with the dose of 25 mg/kg (Fig. 4A). In the hearts, 8-OHdG levels significantly increased (p < 0.05) with the dose 10 mg/kg Glycogen branching enzyme and more significantly (p < 0.01) increased with the doses 15 and 25 mg/kg compared to control levels (Fig. 4B). We used Western blotting to estimate the level of NF-κB p65 protein that was synthesised by heart cells in response to clozapine treatment. Clozapine-treated rats exhibited over-expression of NF-κB p65 protein synthesised by the heart. This increase was significant at the levels of p < 0.05 with 10 mg/kg, p < 0.01 with 15 mg/kg and p < 0.001 with 25 mg/kg of clozapine (Fig. 5). The control group did not show any immunoreactivity for 3-nitrotyrosine (Fig. 6A), an indicator of peroxynitrite. Administration of clozapine (10, 15, and 25 mg/kg) led to a gradual increase of immunoreactivity of 3-nitrotyrosine, which was evident from the increased intensity of the brown staining of cardiac tissues when compared to the control group (Fig. 6B–D). The control group showed little immunoreactivity for caspase-3 (Fig. 7A).

Comments are closed.