“Folate consumption is inversely associated


“Folate consumption is inversely associated Selleck Emricasan with the risk of oral and pharyngeal cancer (OPC) and potentially interacts with alcohol drinking in the risk of OPC. Aldehyde dehydrogenase 2 (ALDH2) gene polymorphism is known to interact with alcohol consumption. The aim of this study was to investigate potential interaction between folate, alcohol drinking, and ALDH2 polymorphism

in the risk of OPC in a Japanese population. The study group comprised 409 head and neck cancer cases and 1227 age-matched and sex-matched noncancer controls; of these, 251 cases and 759 controls were evaluated for ALDH rs671 polymorphism. Associations were assessed by odds ratios and 95% confidence intervals in multiple logistic regression models. We observed an inverse association between folate consumption and OPC risk. The odds ratio for high folate intake was 0.53 (95% confidence interval: 0.36-0.77) relative to low intake (P trend=0.003). This association

was consistent across strata of sex, age, smoking, and ALDH2 genotypes. Interaction between folate consumption, drinking, and ALDH2 genotype was remarkable (three-way interaction, P < 0.001). We observed significant interaction among folate, drinking, and ALDH2 genotype in the Japanese population. European Journal of Cancer Prevention 21: 193-198 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.”
“Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a late-onset neurodegenerative disorder caused by the expansion of a polyglutamine tract within the gene QNZ mw product, ataxin-3. Microarray analysis revealed a dramatic differential expression of carbonic anhydrase-related protein XI (CA-RPXI/CA11) in the presence or absence of mutant ataxin-3. Therefore,

we examined the expression ON-01910 chemical structure and distribution of all three CA-RPs (CA8, 10, and 11) in human neuronal cells that stably express mutant ataxin-3. Compared with the cells containing normal ataxin-3, protein expression of CA8 and CA11 is significantly increased in human neuroblastoma cells harboring mutant ataxin-3. Semi-quantitative RT-PCR demonstrated that all three CA-RPs exhibited significantly higher transcript levels in neuronal cells expressing mutant ataxin-3. Interestingly, CA11 is distributed not only in the cytoplasm but also within the nuclei of the stably transfected mutant cells when compared with the sole cytoplasmic distribution in cells containing normal ataxin-3. In addition, results from transient transfection assays in SK-N-SH and Neuro2a (N2a) cells also confirmed the nuclear localization of CA11 in the presence of truncated ataxin-3. Most importantly, immunohistochemical staining of the MJD transgenic mouse and post-mortem MJD human brain also revealed that CA11 is highly expressed in both cytoplasm and nuclei of the brain cells.

Comments are closed.