Improved find more models for risk stratification are available, and certain guided treatments could halt or reverse disease progression. By contrast, some challenges remain: Chagas disease is becoming an emerging
health problem in non-endemic areas because of growing population movements; early detection and treatment of asymptomatic individuals are underused; and the potential benefits of novel therapies (eg, implantable cardioverter defibrillators) need assessment in prospective randomised trials.”
“Stimulation of murine primary microglia with Toll-like receptor (TLR) agonists enhances their ability to phagocytose and kill bacteria. Here we show that the viral TLR3 agonist poly(I:C) stimulates the release of cyto-/chemokines and nitric oxide
C59 wnt purchase by microglia. Poly(I:C) increases microglial phagocytosis and intracellular killing of Escherichia coli K1, a pathogenic encapsulated bacterial strain, after 30 and 90 min of co-incubation. Stimulation with a viral epitope may strengthen the resistance of the brain to bacterial infections in vivo. Our data encourage animal experiments with poly(LC) derivatives to assess whether this approach can increase the resistance of the CNS against bacterial infections. (C) 2010 Elsevier Ireland Ltd. All rights reserved.”
“Limited data directly characterize the dynamic evolution of brain activity associated with motor learning after stroke. The current study considered whether sequence-specific SU5402 clinical trial motor skill learning or increasing non-specific use of the hemiparetic upper extremity drive functional reorganization of the contralesional motor cortex after stroke. Eighteen individuals with chronic middle cerebral artery stroke practiced one of two novel motor tasks; a retention test occurred on a separate fifth day. Using the hemiparetic arm, participants performed a serial targeting task during two functional MRI scans (day one and retention). Participants were randomized into either a task-specific group, who completed three
additional sessions of serial targeting practice, or a general arm use group, who underwent three training sessions of increased but non-task specific use of the hemiparetic arm. Both groups performed a repeated sequence of responses that may be learned, and random sequences of movement, which cannot be learned. Change in reaction and movement time for the repeated sequence indexed motor learning; shifts in the laterality index (LI) within primary motor cortex (M1) for repeated and random sequences illustrated training effects on brain activity. Task-specific practice of the repeated sequence facilitated motor learning and shifted the LI for M1 as shown by a reduced volume of contralesional cortical activity. Random sequence performance did not stimulate motor learning or alter the LI within the task-specific training group.