In this study, we focused on 2D solid silica sphere film made by LB technique and its superior antireflection effect. A parametric study of deposition conditions is conducted and correlated to the resulting film
morphology and optical properties. We demonstrated that the thin films of single-layer solid silica nanospheres with a diameter of approximately selleck compound 100 nm could offer comparable AR effect with respect to the mesoporous counterparts. Furthermore, the transmission peak of the nanosphere silica AR coating can be controlled by varying the LB deposition parameters. To our best knowledge, no such peak-tunable property has been reported before, although spectral shift due to the thickness of mesoporous Fluorouracil purchase silica spheres’ thin film has been observed in previous works [4, 5, 9, 10]. The deposition parameters which determine the peak transmission wavelength are extracted.
Three variables, namely deposition pressure, surfactant concentration and solution ageing, were found to strongly correlate with the maximum transmission position. Film density and aggregations of nanospheres resulting from the above variables are considered as principal determining factor behind this shift. The ability of achieving broadband transmission and simultaneously being able to determine the position of maximum transmission (>99%) opens the possibility of many application-specific solutions. For photovoltaics, for instance, it is possible to match the absorption peak of absorber materials by tuning the transmission peak of glass. For displays, it can reduce reflection and glare, while transmitting more of the display light, thereby requiring lower intensity light and reducing energy consumption. Methods ALOX15 All chemicals were used as received, without any further purification. Aqueous suspension of silica spheres (50 mg/ml, polydispersity index <0.2, diameter 100 nm) were purchased from Kisker
Biotech GmbH & Co, Steinfurt, Germany. The silica sphere suspension was diluted down to 10 mg/ml with pure ethanol (ACS reagent, ≥99.5%, absolute, Sigma-Aldrich, St. Louis, MO, USA) and then mixed with hexadecyltrimethylammonium bromide (CTAB; ≥98%, Sigma-Aldrich). CTAB was used to change the hydrophilic/hydrophobic nature of the silica spheres. The final diluted suspension with CTAB was ultrasonicated for 30 min each time before deposition. Microscope glass slides (Agar Scientific, Essex, UK, 76 mm × 26 mm) were cleaned in acetone, IPA and DI water subsequently in an ultrasonic bath for 10 min at each step. After cleaning, glass slides were treated with oxygen plasma (Philips RIE, New York, USA). Both sides of the slides were treated by 100-W O 2 plasma for 5 min at a pressure of 150 mbar. Monolayer of silica nanospheres were deposited onto plain glass slides using a Langmuir-Blodgett trough (NIMA Technology model 612D, Coventry, UK). The deposition process and mechanism has been discussed by many previous reports [17–19].