Leukemia research 2012, 36:140–145 PubMedCrossRef 41 Larfors G,

Leukemia research 2012, 36:140–145.PubMedCrossRef 41. Larfors G, Hallbook H, Simonsson B: Parental age, family size, and offspring’s risk of childhood and adult acute leukemia. Cancer epidemiology, biomarkers &

prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2012. 42. Juhl-Christensen C, Ommen HB, Aggerholm A, Lausen B, Kjeldsen E, Hasle H, Hokland P: Genetic and epigenetic similarities and differences between childhood and adult AML. Peditric blood & cancer 2012, 58:525–531.CrossRef BKM120 nmr Competing interests The authors declare that they have no competing interests. Authors’ contributions WZand ZC conceived of the study,

and carried out the analysis of the literatures and drafted the manuscript. LZ and YW LEE011 in vitro carried out the collection of the literatures. BZ helped with the statistical analysis and manuscript drafting. ZC and WZ conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.”
“Background Gastric cancer is one of the most frequent cancers in the world, and almost of 50% gastric cancer death occurred in China [1–3]. Surgery offers the only realistic chance of cure; However, many of the patients present with unresectable tumors at the time of diagnosis. Even with resection, still more than 50% of patients will relapse and eventually die of their disease [4, 5]. Therefore, non-surgical methods have attracted increasing attention. In recent years, 125I implantation has been widely used to treat prostate cancer and other tumor types because of its ability to offer high precision, little trauma, strong lethality, and fewer complications [6–9]. Most recently, Wang and colleagues applied 125I implantation to treat advanced gastric cancer and found significant improvement Glutamate dehydrogenase in clinical symptoms and life quality of patients [10]. Although the 125I seed implantation have been successfully applied in clinic, its radiobiological effect and underlying

molecular mechanism are far from fully understood. Recently, Zhuang and colleagues indicated that continuous low dose rate irradiation influenced the proliferation of cells via MAPK signal transduction. And apoptosis was the main mechanism of cell-killing effects under low dose rate 125I irradiation in CL187 cells [6]. Besides, Ma and colleagues demonstrated that 125I irradiation significantly induced cell apoptosis and inhibited DNMT1 and DNMT3b expression at 4 Gy in pancreatic cancer cells. Thus, the irradiation-induced apoptosis and DNA hypomethylation might be two key mechanisms underlying the therapeutic effect of low energy 125I seed implantation [11]. However, to date, the global molecular changes induced by 125I irradiation have not yet been fully understood.

Comments are closed.