Thus, iPSCs could serve as a favorable cell source for a wide range of applications, including drug toxicity testing, cell transplantation, and patient-specific disease modeling. Here, we describe an efficient
and rapid three-step protocol that is able to rapidly generate hepatocyte-like cells from human iPSCs. This occurs because the endodermal induction step allows for more efficient and definitive endoderm cell formation. We show that hepatocyte growth factor (HGF), which synergizes with activin A and Wnt3a, elevates the expression of the endodermal marker Foxa2 (forkhead box a2) by 39.3% compared to when HGF is absent (14.2%) during the endodermal induction step. In addition, iPSC-derived hepatocytes had a similar gene expression profile to mature hepatocytes. Importantly, the hepatocyte-like cells exhibited cytochrome P450 3A4 (CYP3A4) enzyme KU-60019 nmr activity, secreted urea, uptake of low-density lipoprotein (LDL), and possessed the ability to store glycogen. Moreover, the hepatocyte-like cells rescued lethal fulminant hepatic failure in a nonobese diabetic severe combined immunodeficient mouse model. Conclusion: We have established a rapid
and efficient differentiation protocol that is able to generate functional hepatocyte-like cells from human iPSCs. This may offer an alternative option for treatment of liver diseases. (Hepatology 2012) Viral hepatitis or drugs often cause liver injury and cirrhosis. Cell press Liver transplantation is the only effective treatment for end-stage liver diseases1; however, serious side effects of chronic immunosuppression Selleck Gemcitabine and lack of suitable donor livers are major obstacles to liver transplantation. Reprogramming of mouse and human somatic cells to become induced pluripotent stem cells (iPSCs) has recently been achieved by viral transduction using four transcription factors.2 Unlike human embryonic stem (ES) cells, human iPSCs provide an alternative approach that
avoids the controversies associated with the use of human embryos to obtain pluripotent ES cells. Although their gene expression pattern is not identical to human ES cells,3 human iPSCs are pluripotent and able to differentiate into most, if not all, cell types of the body. Therefore, human iPSC-derived somatic cells, such as hepatocytes, would be able to serve as an alternative source for liver transplantation, as well as help with toxicity screening during drug discovery. During embryonic development, epiblast cells receive sequential developmental cues and undergo epithelial-to-mesenchymal transition to generate mesoderm or definitive endoderm.4 Several studies have successfully generated hepatocyte-like cells from human ES cells5-11 and human iPSCs12-17in vitro. Most of these studies have focused on how to develop an efficient differentiation protocol with which to generate functional hepatocyte-like cells.