We found that human IgGs are stable with minimal heat-induced degradation and aggregation at pH 5.0-5.5 irrespective of their subclass. We also found that IgG1 is more susceptible to fragmentation, whereas IgG4 is more susceptible to aggregation. This basic information emphasizing the influence of pH on IgG stability
should facilitate the optimization Nutlin-3 of formulation conditions tailored to individual antibodies for specific uses.”
“Background: It was of interest to investigate the factors affecting kinetics of transformation of fluconazole polymorph II (the metastable form) to fluconazole polymorph I (the stable form) using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Method: Fluconazole polymorphs I and II both were prepared by crystallization in dichloromethane. The two forms were characterized using differential scanning calorimetry, thermogravimetric
analysis, powder X-ray diffraction, solubility, and DRIFTS. Transformation of polymorph II to polymorph I was also studied under different isothermal temperatures using DRIFTS. Kinetic analyses of the data were done using model-dependent and model-independent methods. Eighteen solid-state reaction models were used to interpret the experimental results. Results: Based on statistics, the Prout-Tompkins model provided the best fit for the transformation. The activation energy (Ea) value derived from the rate constants of the Prout-Tompkins model was 329 kJ/mol. Model-independent MK-2206 cell line Nocodazole inhibitor analysis was also
applied to the experimental results. The average values calculated using both methods were not significantly different. Factors affecting kinetics of transformation such as mechanical factors, relative humidity, and the effect of seeding were also studied. Mechanical factors, which included trituration and compression, proved to enhance transformation rate significantly. Relative humidity proved to transform both polymorphs to monohydrate form. The presence of seed crystals of polymorph I was proved not to affect the transformation process of polymorph II to polymorph I. Effect of solvent of crystallization (dichloromethane) was studied. A significant change of the rate of transformation was proved in the presence of solvent vapors, and a change on the mechanism was proposed.”
“Background. In accord with the cancer stem cell (CSC) theory, only a small subset of cancer cells are capable of forming tumors. We previously reported that CD44 isolates tumorigenic cells from head and neck squamous cell cancer (HNSCC). Recent studies indicate that aldehyde dehydrogenase (ALDH) activity may represent a more specific marker of CSCs.\n\nMethods. Six primary HNSCCs were collected. Cells with high and low ALDH activity (ALDH(high)/ALDH(low)) were isolated. ALDH(high) and ALDH(low) populations were implanted into NOD/SCID mice and monitored for tumor development.\n\nResults.