We want to note that our results are valid only in low temperature limits and
in the absence of strong disorder into the systems. In the case of non-zero temperature, it is expected that the resonances in the conductance curves will become broad and will gradually vanish at room temperature [20]. Authors’ information LR is a professor at the Physics Department, Technical University Federico Santa Maria, Valparaiso, Chile. JWG is a postdoctoral researcher at the International CRT0066101 Iberian Nanotechnology Laboratory, Braga, Portugal. Acknowledgements Authors acknowledge the financial support of FONDECYT (grant no.: 11090212) and USM-DGIP (grant no.: 11.12.17). References 1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. Momelotinib cost Science 2004, 306:666.CrossRef 2. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 2004, 108:19912.CrossRef 3. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou
D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA: Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312:1191.CrossRef 4. Gomes KK, Mar W, Ko W, Guinea F, Manoharan HC: Designer Dirac fermions and topological phases in molecular graphene. Nature 2012, 483:306.CrossRef 5. Li X, Wang X, Zhang L, Lee S, Dai H: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319:1229.CrossRef 6. Ci ML323 L, Xu Z, Wang L, Gao W, Ding F, Kelly KF, Yakobson BI, Ajayan PM: Controlled nanocutting of graphene. Nano Res 2008, 1:116.CrossRef 7. Kosynkin D, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM: Longitudinal unzipping of carbon nanotubes to form graphene
nanoribbons. Nature 2009, 458:872.CrossRef 8. Terrones M: Materials science: nanotubes unzipped. Nature Astemizole 2009, 458:845.CrossRef 9. Oezyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D, Levitov LS, Kim P: Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys Rev Lett 2007, 99:166804.CrossRef 10. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim A: Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320:356.CrossRef 11. González JW, Santos H, Pacheco M, Chico L, Brey L: Electronic transport through bilayer graphene flakes. Phys Rev B 2010, 81:195406.CrossRef 12. Pedersen TG, Flindt C, Pedersen J, Mortensen N, Jauho A, Pedersen K: Graphene antidot lattices: designed defects and spin qubits. Phys Rev Lett 2008, 100:136804.CrossRef 13. Oezyilmaz B, Jarillo-Herrero P, Efetov D, Kim P: Electronic transport in locally gated graphene nanoconstrictions. Appl Phys Lett 2107,91(19):2007. 14.